Decentralized Finance

DeFi Security

Instructors: Dan Boneh, Arthur Gervais, Andrew Miller, Christine Parlour, Dawn Song

UNIVERSITY OF

ILLINOIS

AAAAAA -CHAMPAIGN

D Stanford Imperial College
% University London

T

A CAL

& of O
f & SN
gl A
R o
i3/ a8
B 1
oy Vsl
) 7

Vx5

UNIVERSITY OF CALIFORNIA

DeFi Security Affects Multiple Layer

Ul Other
Third party Layer

Wallet, Website, APls § Oracle data feed, Centralized governance

DeFi Protocol + Asset Atomic Composable DeFi é‘y
Application Layer Fungible, Non-Fungible Exchange, Loan, Mixer, Liquidity incentive Iacr?; IZSZIC';IK

Data Virtual Machine

Smart contract Layer
Block, Transaction, Contract Contract execution, State transition

Consensus Incentive Protocol
Blockchain Layer

Proof-of-Work, Proof-of-Stake Block reward, MEV reward, TX fee

Network Services Network Protocols
Network Layer

DNS, IP, BGP P2P overlay, Peer discovery, Data propagation

Network Layer Security

https://defi-learning.orq

Network Layer

= Why Network Layer?
* Information dissemination and propagation.
= Latency matters!

= How many nodes?
= Bitcoin: about 10’000 reachable full nodes (TCP/8333)
= Ethereum:
= Dogecoin:

= What type of nodes exist?

* Full nodes
» Light nodes

Exchange Transaction Propagation

Trader P2P Network

Txfee:5

Exchange Transaction Propagation

Trader P2P Network

Txfee:5

Exchange Transaction Propagation

Trader P2P Network
Elected Leader/Miner
[Txfee:5
Mempool
, Txfee:S Tx fee : 10

Tx fee: 1

Exchange Transaction Propagation

Trader P2P Network

Elected Leader/Miner

Mempool Final Block
Txfee:5 AV
, Tx fee : 10
< (| Txfee:5 m'
| Tx fee: 1

Network Layer — Spy Node

Attacker (Spy Node) P2P Network

] N
@b Miners,] ‘
. E L
b /%4
\-!f{‘ﬁc
m) 4 TTURE

r

}

Trader

Txfee:5

Network Layer — Spy Node

P2P Network Elected Leader/Miner

Mempool

Tx fee : 10

Tx fee: 1

10

Front-running

Trader P2P Network Elected Leader/Miner

Mempool Final Block

Txfee:5
Tx fee: 10 Jpr—p——
.”Txfee:G .f .ﬁ
I:I{ | Txfee:5
| Txfee: 1

11

Back-running

Trader P2P Network Elected Leader/Miner

Mempool Final Block

Txfee:5
Tx fee: 10 P —
Txfee:5 .‘f .‘
I:I{ ﬁTxfee:s
| Txfee: 1

12

Eclipse Attacks

https://defi-learning.orq

Eclipse Attacks

14

«— @

Request timeouts

Victim

@

Block timeout: 20 minutes
Transaction timeout: 2 minutes

15

Security Implications

= Adversary
= Blinds victim from blocks and transaction > 20 min
= Experimental validation

= Impact P
= Double spend transactions “
= Aggravated selfish mining

N,
7\

= Network wide Denial of Service
= Mitigations
= Hardening measures
= Estimate waiting time for secure transactions

16

Eclipse Requirements

1. Must be first peer to advertise Transaction/Block

new Hash,
| wait

2. Victim should wait
Block timeout: 20 minutes
Transaction timeout: 2 minutes

17

Being First on the Network Layer

% 8 California
ik t Hash 8
uric Singapore
Ha
N

Frankfurt

.,‘-.

¢

Bitcoin Network

Comecions o Adverary o o0 oo

Connections of Victim

0.44+ 0.57+ 0.80+ 0.89+

Average success in being first 0.14 0.20 0.14 0.07

Network Layer Timeouts

= Transactions
= After 2 minutes request from other peer (FIFO)

FIFO queue
& ~
(T . “w w o

>

= Blocks (older Bitcoin version)
= After 20 minutes disconnect and do nothing

= |f received header, disconnect and request block
from another peer

19

Blockchain Layer Security

https://defi-learning.orq

Why Blockchain Layer?

= Double-Spending
= Selfish Mining

= Undercutting

= Bribery

21

Double-Spending

k TXIegmmate
Goods/Ser

vVice
TXdou% Kegtmate

TXIegltlmate
o ". "mvandated

22

Increasing Mining Advantage with an Eclipse

» |dea from Eyal et. al:
= Instead of publishing, keep a block private
= Other miners will perform wasteful computations

oy ||| \1-a
(1-0)(1-y) I\

& (X :hashing power of adversary

@ ’y . propagation parameter

23

Increasing Mining Advantage with an Eclipse

‘5 P: probability to eclipse a block to a miner

24

Increasing Mining Advantage with an Eclipse

1.0

— P = 0.500, consec. denied blocks = 2
Honest mining

0.8 - Network control

= ~={0.00 [Eyal]

~ = 1.00 [Eyal]

Relative pool revenue

0.0 0.1 0.2 0.3 0.4 (.1
Pool size

ot

25

Smart Contract Layer Security

https://defi-learning.orq

Smart Contract Layer

contract Wallet {
uint balance = 10; Transfer Sss

to the caller

function withdraw () {

 if (balance > 0) J

msg.sender.call.value (balance) () ;
balance = 0;

bl

= Programs that handle money

= Executed on a blockchain, written in a high-level
language, compiled to VM code

= No patching after release
= What can go wrong?

27

The DAO attack

Funds Stolen From the DAO One Year
Ago Would be Worth $1.35bn Today

Crypto. News

JP Buntinx

Etherdice is down for maintenance. We
are having troubles with our smart
contract and will probably need to invoke
the fallback mechanism.

King of the Ether Throne

An Ethereum DApp (a "contract”), living on the blockchain, that will make you a King or Queen, might
grant you riches, and will immortalize your name.

- Important Notice

A SERIOUS ISSUE has been identified that can cause monarch compensation payments to not be
sent.

DO NOT send payments to the contract previously referenced on this page, or attempt to claim the
throne. Refunds will CERTAINLY NOT be made for any payments made after this issue was identified
on 2016-02-07.

28

Security Bug #1: Reentrancy

{ r 4 | Wallet Contract
User Contract

function moveBalance () { calls the default
wallet.withdraw () ; w ” :
) payable” function

function () payable {

// log payment
}

balance is zeroed
after ether transfer

Can the user contract withdraw more than 10 ether?

29

Security Bug #1: Reentrancy

User Contract

function moveBalance ()
wallet.withdraw () ;
}

function () payable {
wallet.withdraw() ;

}

issetto 0

Calls withdraw()

before balance

Wallet Contract

uint balance = 10;

{

function withdraw () {
if (balance > 0)

{bal.nce = 0;]

balance is zeroed

after ether transfer

An adversary stole 3.6M Ether!

msg.sender.call.value (balance) () ;

30

Security Bug #2: Unprivileged write to storage

. Wallet Contract

address owner = ...

Any user may

change the wallet’s function initWallet (address _owner) {
owner [owner = _owner;

}

function withdraw (uint amount) {
[if (msg.sender == owner) {
owner.send (amount) ;
}
}

Only owner can

send ether

An attacker used a similar bug to steal $32M

31

contract Example {

}

Smart Contract Bug Exercise 1

public owner;
private mySecret;

Any variable is readable on the

constructor { public Ethereum blockchain.
owner = msg.sender; Declaring a variable private only
} restricts the automatic creation of
function setSecret(string _secret) public { getter for that variable, but does
— not hide it.

require(msg.sender == owner);
mySecret = _secret;

}

function getSecret() public returns (string) {
require(msg.sender == owner);
return mySecret;

}

Hint: who would be able to read mySecret? 32

Smart Contract Bug Exercise 2

contract Vulnerable {

(address => bool) authorized;
(address => uint) balances;

function refund(uint amount) public {
require(authorized[msg.sender));

require(amount <= balances[msg.sender]);

msg.sender.call.value(amount)("");
balances[msg.sender] -= amount;

}
}

Hint: who can be msg.sender?

The code is vulnerable to a
reentrancy attack.
The balance of the msg.sender is
only updated after a transfer is
made. If the msg.sender is a

contract and has a fallback
function that calls into the contract
again, the msg.sender can deplete
the contract of the funds.

33

Smart Contract Bug Exercise 2

contract Vulnerable {
... /I vulnerable as the previous example

}

contract Exploit {

\Z
Hint: check the previous example
function register(address contract) public {
v = Vulnerable(contract);

}

function exploit() public {
// your code here

}

/[your code here

}

34

Smart Contract Bug Exercise 2 - Solution

contract Vulnerable {
... /I vulnerable as the previous example

}

contract Exploit {
\Z

function register(address contract) public {
v = Vulnerable(contract);

}

function exploit() public {
v.refund(1);

}

function () public {
v.refund(1);

}
}

35

More smart contract security bugs

Unexpected ether
flows

Insecure coding, such as unprivileged writes (e.g., Multisig Parity bug)

Use of unsafe inputs (e.g., reflection, hashing, ...)

QO « T @\

Reentrant method calls (e.g., DAO bug)

36

More smart contract security bugs

" Known Attacks - Ethereum Sm= X

& consensys.github.io, t w @ Incognito

- : GitHub
||| Ethereum Smart Contract Best Practices Q search 4.3k Stars - 843 Forks

Ethereum Smart Contract Best Table of contents
Fthereum Known Attacks e
Home

Reentrancy on a Single

General Philosophy Function

The following is a list of known attacks which you should be aware of, and defend against when
Secure Development Cross-function Reentrancy

A writing smart contracts.
Recommendations

Pitfalls in Reentrancy Solutions

Known Attacks Front-Running

Software Engineering Techniques Reentra ncy Taxonomy

Token specific recommendations .
Displacement

Documentation and Procedures One of the major dangers of calling external contracts is that they can take over the control flow, i< efiibn
I 10r
Security Tools and make changes to your data that the calling function wasn't expecting. This class of bug can s .

uppression

Bug Bounty Programs take many forms, and both of the major bugs that led to the DAO's collapse were bugs of this

About v

Mitigations
sort.
Timestamp Dependence

. . Integer Overflow and Underflow
Reentrancy on a Single Function Do with (Unexpected) revert

The first version of this bug to be noticed involved functions that could be called repeatedly, Dos with Block Gas Limit

before the first invocation of the function was finished. This may cause the different invocations Gas Limit DoS on.a Contract
y 5 - . via Unbounded Operations
of the function to interact in destructive ways.
Gas Limit DoS on the Network
via Block Stuffing
mapping (address => uint) private userBalances; Insufficient gas griefing
Forcibly Sending Ether to a
function withdrawBalance() public { Contract
uint amountToWithdraw = userBalances[msg.sender];
(bool success,) = msg.sender.call.value(amountToWithdraw)(""); At this poi
require(success);
userBalances[msg.sender] = 0; Constantinople Reentrancy
} Attack

Deprecated/historical attacks

Call Depth Attack (deprecated)

Other Vulnerabilities
Since the user's balance is not set to 0 until the very end of the function, the second (and later) 37

https://consensys.github.io/smart-contract-best-practices/known_attacks/

Automated security analysis

All possible
contract
behaviors /,
- -7 Bugs
\ ¥
Ak *

Problem: Cannot enumerate all possible contract behaviors...

38

Automated security analysis — Existing solutions

p—

Testing

Easy to implement, but
very limited guarantees

Dynamic analysis
Symbolic execution

Better than testing, but
can still miss vulnerabilities

——————
p——

Static analysis
Formal verification

Strong guarantees, but many
false positives

39

DeFi Flash Loan ,, Attacks”

https://defi-learning.orq

Flash Loan Attacks

EEEEEEEEEEEEEEEE

41

bZx - Pump and Arbitrage Attack — February 2020

1) Flash Loan Provider (dYdX) Ly 2) Lending (Compound) Uniswap Pool Size E

borrow 10,000.00 ETH collateralize 5,500.00 ETH and borrow 112.00 ~ E 2817.77ETH !

Y ; 77.09 WBTC

Flash loan 3.1) Margin Trade Provider (bZx) L) 3.2) Exchange (WBTC Uniswap) E '
transaction 4 5x short 1,300.00 ETH against WBTC | ~ |convert 5,637.62 ETH to 51.3. : 1 845540ETH |
(block9484688) | \ ~ receceooooooed 4) Exchange (WBTC Uniswap) ’ Lo AL SroinsE
CTH—110.071.41 ETH , rTTTTTTTTTomomme :

3,200.00 ETH 11_(_ _()_/ 1_4]_ _F_I_}_.{_:eCOHVCrt 112.00 BTC to 6,871.41 ETH :Uniswap Pool Size .

5) Flash Loan Provider (DyDx) v’] l Pty 3» ETH Flow E 8455.40 ETH :

_[repay 10,000.00 ETH 7141 ETH; : ‘ | :

Block () Exchange (ybery 71 by Lending (Compoundy T . § ISSIORETH
9484917 - 9496602 |_iconvert 4,377.72 ETH to 112.00 WBTC : ~ irepay 112.0 [C and redeem 5,500.00 ETH | | 4 WBTC |

Input: 130 USD gas
Output: 350,000 USD
Optimal: 830,000 USD 42

bZx — Oracle manipulation — February 2020

7,500 ETH | Adversary

7,500 ETH

43

bZx — Oracle manipulation — February 2020

Uniswap

879.76 ETH
243,441.12 sUSD

1,419.76 h

151,021.42 sUSD

Adversary
92,419.70 sUSD
ﬂ 6,960 ETH
92,419.70 sUSD

540 ETH

Exchange rate: (step 2) 171.15 sUSD/ETH

bZx — Oracle manipulation — February 2020

Uniswap

1,419.76 ETH
151,021.42 sUSD

Price:
106.05 sUSD/ETH

Adversary
92,419.70 sUSD
ﬂ 6,960 ETH
92,419.70 sUSD

540 ETH

Exchange rate: (step 2) 171.15 sUSD/ETH

bZx — Oracle manipulation — February 2020

Uniswap

1,419.76 ETH
151,021.42 sUSD

Price:
106.05 sUSD/ETH

Kyber Reserve

360 ETH 0.91 ETH

107,901.90 sUSD

360.91 E#

44,317.80 sUSD

Adversary

6,600 ETH
156,003.79 sUSD

63,584.09 sUSD

46

Exchange rate: (step 2) 171.15 sUSD/ETH; (step 3) 176.62 sUSD/ETH

bZx — Oracle manipulation — February 2020

Uniswap

1,419.76 ETH
151,021.42 sUSD

Price:
106.05 sUSD/ETH

Kyber Reserve

360 ETH 360.91 ETH

44,317.80 sUSD

Adversary

6,600 ETH
156,003.79 sUSD

63,584.09 sUSD

Price:
108.44 sUSD/ETH

47

Exchange rate: (step 2) 171.15 sUSD/ETH; (step 3) 176.62 sUSD/ETH

bZx — Oracle manipulation — February 2020

Uniswap

1,419.76 ETH
151,021.42 sUSD

Price:
106.05 sUSD/ETH

Kyber Reserve

Adversary 360.91 ETH

3,517.86 ETH

44,317.80 sUSD

Synthetix

3,082.14 ETH
1,099,841.39 sUSD

Price:
108.44 sUSD/ETH

943,837.59 sUSD

Exchange rate: (step 2) 171.15 sUSD/ETH; (step 3) 176.62 sUSD/ETH; (step 4) 268.30 sUSD/ETH 48

bZx — Oracle manipulation — February 2020

1,099,841.39

Adversary

9,881.41 ETH

6,799.27
ETH

Synthetix

Uniswap

1,419.76 ETH
151,021.42 sUSD

Price:
106.05 sUSD/ETH

Kyber Reserve

360.91 ETH
44,317.80 sUSD

Price:
108.44 sUSD/ETH

Constrained Optimization Framework

= Formulate DeFi actions in models

Xy
x+Ax DeFi Attack DeFi On-
Models Vector Chain State

v ¢ v

= Construct a constrained optimization Parametrized Optimizer

problem based on the attack vector l

= Objective function: outcome profit Optimal Parameters
&
Revenue

= Constant product AMM: Ay =y —

m Fotrh the nn-rhain ctate that thae

50

Optimizing the bZx attack 2

= Borrow X ETH (bZx flash loan)
= Convert p1 ETH to f1(p1) sUSD (Uniswap)
= Convert p2 ETH to /2(p2) sUSD (Kyber)
= Deposit p3 ETH for /3(p3) sUSD (Synthetix)
= Collateralize z sUSD to borrow ¢(z) ETH
= 2=f1(p1)+/2(p2)+f3(p3)

= Repay X ETH (bZx flash loan)

= Objective: o=g(f1(p1)+f2(p2)+f3(p3))—X
=s.t. pl+p2+p3<X

51

Optimizing the bZx attack 2

= Sequential Least Squares Programming (SLSQP)
= SciPy
= Ubuntu 18.04.2, 16 CPU cores, 32 GB RAM

= Validation by concrete execution
» Execution on the real blockchain state

52

Sandwich Attacks

https://defi-learning.orq

AMM — Automated Market Maker

rXy==k
/N

Asset X Asset Y

. . constant
quantity quantity

o4

Block

Sandwich Attack

: Ty : '
' TransactXForY '—pendlng ;
: T A >< :
: TransactXForY pending :
: T i !
: TransactYForX peneing)E

time appearance on blockchain network

transaction order

95

AMM — Constant product formula

57,

56

AMM — Constant product formula

-
% re) State Before
S84 Xy = 10
@)
> Yo =30
%g k= xo - yo = 300
- -
<
ro State After
R x =15
20 3, =20
k =x; -y, =300
xy = 300
>
10 15 Amount x of asset X

— in the pool

Amount y of asset Y

Expected Slippage

A : L
The expected increase or decrease in price
based on the trading volume and available
liquidity.

a

8 T

o

o C

<

L

Amount x of asset X
in the pool

58

Unexpected Slippage -> Worse Execution Price

A

Amount y of asset Y
in the pool

Amount x of asset X
in the pool

99

Unexpected Slippage -> Better Execution Price

A

N
)

Amount y of asset Y
in the pool

Amount x of asset X
in the pool

60

Slippage Protection

A
Configures a slippage protection threshold to prevent
unacceptable slippage
>_
3 \
U) 3
© 8 Swap 3ot
5 2 T
> _GCD C o ETH Transaction Settings
E +— : SIippage Slippage tolerance ?
S & protection ; Auto < 1.0@%)
@)
=
<
>

Amount x of asset X
in the pool

61

Amount y of asset Y

Slippage Protection

in the pool

Transaction fails when crossing the slippage limit.

SIippage o ETH Slippage tolerance ?
protection ' Auto (100%)

\

Amount x of asset X
in the pool

62

Sandwich Attack Against Taker

A
Idea: Maximise the victim’s slippage
>_
% B A1
s 8 ’
kol |
> Q@ v Slippage
§ P protection
g - \
< A2

Amount x of asset X
in the pool

63

Amount y of asset Y

in the pool

Network layer + DeFi protocol layer

A1
v Slippage
| protection
_

Amount x of asset X
in the pool

7). Broadcast
TA1 and TA2

¢ TA1 and TA2

5). Profitable?

$ Adversary] Miner %

o P

—3a). T, added to mempool—"" ‘o ‘-.

’
\

," Ethereum
+ Network

e s O

8). Ta1 and Tao 3b). T, added
added to mempool to mempool

9)-Tat: Ty Taz
6). Adversary sends included in the

same block

'€—2). Broadcast T,—

Lightweight
Node/ Full

Node

1). Victim sends
transaction T,,

Victim

64

Sandwich attack profitability

ETH transacted by the adversary

225 _a‘ .. _02

- 0.0

50 L - 02

-------- adversary breaks even at 0.01 ETH transaction fee

—-—- adversary breaks even at 0.001 ETH transaction fee
-------- 1% total(expected + unexpected) slippage for the victim
-------- 1% unexpected slippage for the victim

—-—- 0.5% unexpected slippage for the victim

---- 0.1% unexpected slippage for the victim

Revenue by the adversary (in ETH)

65

Gas price (in GWei)

10000 -

8000 -

(@)

(@)

(@)

@)
]

4000 A

2000 A

Multiple Adversaries

Break-even of the attacker becomes harder to attain

—— 2 Adversaries
5 Adversaries
—— 10 Adversaries

I I 1 I I I

0 5 10 15 20 25 30
Victim transaction pending duration (in seconds)

66

Amount y of asset Y

in the pool

Advanced Sandwich Attack

Taker attacks Taker Provider attacks Taker

A1

Slippage
protection

Slippage
protection

Amount y of asset Y
in the pool

Amount x of asset X = Amount x of asset X
in the pool in the pool

67

Blockchain Extractable Value

https://defi-learning.orq

What is Blockchain (or Miner) Extractable Value?

Price of collateral drops below health factor

v

Liquidation! Q8§

v

Who will liquidate?

« &

*

69

How much MEV?

o000 @ MEV Explore X @ MEV Explore (+}

& explore.flashbots.net w @ Incognito

© MEV-Explore vo Dashboard Leaderboard Data & Metrics IRl = ETH

= Extracted MEV Over Time

$614.1M $221.3M $16.9M

Total Extracted MEV (since Jan 1 2020) Last 30 days Extracted MEV Last 24h Extracted MEV
Cumulative Extracted MEV Daily Extracted MEV
$600.0M $563.0M
$4.5M
$550.0M
$500.0M $4.0M
7 $450.0M 5 $35M
2] wv
S $400.0M g $3.0M
= $348.1M < $3.0M
o $350.0M o
2 & S $25M $2.4M
S $300.0M =
4 $252.1M] $2.0M
£ $250.0M 4 $2.0M
s L
S &
£ $200.0M $156.9M X $15M st p
$150.0M 3 $1/0M 1.0M
$112.3M $1.0M
$100.0M s
50.9M
$0.5M $0.3M
$50.0M 0:2M
$0.0M $0.0M $2.3M $30M $3.3M $132M $0.0M $0-IM ¢4 00 60.0M $0.0M $0.1M ¥
$0.0M $0.0M
Jan 1,2020 Jan1,2021 Jan1,2020 Apr 1,2020 Jul 1,2020 Oct 1,2020 Jan1,2021 Apr 1,2021

MEV = Miner Maximum Extractable Value

70

| What does extracted MEV mean? <~ Check out our Data & Metrics page!

How much MEV? — Sandwich Attacks

$100M
$10M JE Total........ ~UniswapV1. . .. BT (17207 T U O O E

& $1M;---~--Bam:oz BN UniswapV2 . HEEE_UniswapV3
£ ~ $100K}
]
!

=2 $10K

= $10

100,000
10,000
l,mo[...
10

I
A
I
ml
i
[
I
I
1
|
-
|
418
|
|
1
-

[N QU gu—_— T |

Sandwich Attacks

19-02
19-03
19-04
19-05
19-06
19-07
19-08
19-09

18-12
19-01
21-01
21-02
21-03
21-04
21-05
21-06
21-07
21-08

19-10
19-11
19-12
20-01
20-02
20-05
20-06
20-07
20-08
20-09
20-10
20-11
20-12

Fig. 3: Sandwich attacks, from block 6803256 (1st of December, 2018) to 12965000 (Sth of August, 2021).

oQ

71

How much MEV? — Liquidations

Total

Aave V2
Aave V1
Compound
dYdX

@
oo
S
<

g
=
-1

Accumulative Profit (USD)
R
S £
< <

$0 5500000 9000000 10000000 11000000 12000000 12965000
(Jun-21-2019) (Nov-25-2019) (May-04-2020) (Oct-06-2020) (Mar-08-2021) (Aug-05-2021)

Block (Date)

(a) Accumulative profit of fixed spread liquidations.

2 35007 I Aave V2

§3,000" BN Aave V1

k2 2,500 Compound
2,000 mmm dYdX

TR 1

#*500(J
0 L——id] [
TV O —~
33339357
(o)M= e e e Ne e e
v oy oy oy v gy oy e

(b) The monthly number of fixed spread liquidation events.

Fig. 5: The number of liquidations increase in months where
the ETH price collapses, e.g., in March, 2020 and May, 2021.

72

How much MEV? — Arbitrage

$100M

A B Total B Curve BN Sushiswap : : l
75} $ 10M . ' | 1
=) BN Bancor UniswapV2 ~ B Swerve : : !
— $IM UniswapV1 B linch BN UniswapV3 : : :
A | u |

$10K 1 i 1
%‘ 1 1 1
S SIK : : |
£ s [[: e s

$104 —u_ N B B § I .

@ 100,000 - Sushlswap lmch launch === Uniswap V3 launch : N N WS i
£ 1,000 ‘ :
:.B ’])
2 l(x) l' Jl
3 1]} [[[ESSSSN (S [(SN [SSee (S (S (e (S (o (BN (B | [S | SRS | S | . | 1

8 3 8 8 3 8 8 5 8 8 8 2 8 2 =2 8 3 8 8 3 8 8 5 &
2 S S 2 8§ a2 S & 28 2 &8 8 &8 &8 &8 §8 &8 &8 &8 & & & &«

Fig. 7: Monthly arbitrage statistics from block 6803256 (1st of December, 2018) to block 12965000 (5th of August, 2021).

73

Transaction Replay Attacks

https://defi-learning.orq

Generalized Front-Running

= “Copy Cat” or “Replay”
= Observe transaction on the network layer
= Replace certain data, sign, and broadcast copy

= Potential Profit
= 35M USD over 32 months
= 188,365 profitable transactions (0.02%)
= Real-time algorithm (0.18s + 0.29)

75

Generalized Front-Running Algorithm & Results

Algorithm 1: Transaction Replay Algorithm.

Input: The current highest block B;; the potential victim
transaction Ty ; the adversarial account address A.

Function ConstructReplay(Ty, A):
T.sender «— A
T.value < Ty .value
T.input < substituting Ty, .sender in Ty .input with A

return T
end

Algorithm TransactionReplay(Ty, A):
Treplay <ConstructReplay(Ty, A)
Concretely Execute Ty¢p1qy upon block B;

if Tyepiay is profitable then
| Front-run Ty with Tyepiay

end
end

E 50,0004 —— Block-top-replayable /

L - Shortly-before-victim-replayable ‘

'Jg 45,000+ - -~

4 10,000 < 7

()]

2 i

S 5000- /,_,/

-

E) B 7——_’__’_”.——&

8 : 1 I I 1 T

< 7000000 9000000 11000000
(Jan-02-2019) (Nov-25-2019) (Oct-06-2020)

Block (Date)

(a) Accumulative profit that can be extracted by replay attacks.

0

c

'% 20,000 BN Block-top-replayable

g Shortly-before-victim-replayable
o

|_

_

BEV Forking and Chain
Reorganisation

https://defi-learning.orq

v
’
s
’
Bl N
N

The dangers of naively maximizing MEV

s
+* Miner

1
IIIIIIIIIIII

/8

Bl

The dangers of naively maximizing MEV

79

The dangers of naively maximizing MEV

Case 1:

Bl

B2 [B3
\\ Honest
‘. Miner
\\
\
AY
\
\\
Malicious
Miner
T C3

Case 1:

Malicious miner forfeits MEV opportunity

80

Case 2:

Bl ¢

The dangers of naively maximizing MEV

Case 1:

Malicious miner forfeits MEV opportunity

Case 2:

Keeps mining block C2

81

Case 2:

Bl

The dangers of naively maximizing MEV

€

i
@

C2

C3

Case 1:

Malicious miner forfeits MEV opportunity

Case 2:

Keeps mining block C2

82

The dangers of naively maximizing MEV

Case 2:

i_““““} Case 1:
B2 4 B4 |

Malicious miner forfeits MEV opportunity
51 >y

?\;ljirr]mzsrt Case 2:
- Keeps mining on block C2
2V
Malicious I 1
Miner o ________}

— Waste computational power
k — Increase stale block rates and risks for:

e Double spending
“ e Selfish mining 83

Markov Decision Process (MDP)

>
o
)
B
(/)]
Network Layer
Parameters
Markov
Parameter Proof of V_Vork Stale Block Rate Decision
Blockchain
Process

Consensus Layer
Parameters 84

Markov Decision Process (MDP)

State: (3, 1) double- spendln

g value
Attacker
chain

85

Reducing MEV is the key to security (example)

10% MEV, 4x average
miner block reward

86

» “On the just-in-time discovery of profit-generating transactions in defi protocols.” peer-reviewed at S&P’21

https://arxiv.org/pdf/2103.02228.pdf

Reducing MEV is the key to security (example)

874x

87

BEV Relayer &
How to Mitigate BEV?

https://defi-learning.orq

BEV Relay Architecture

e:""a o "
AT \ / N e

U' - BEV transact|on(sL BEV transaction(SL : Block with the most
@;,,ﬁ) BEV Relayer ----» profitable transaction(s):
il I

1 in the first position(s)

/aym:lgate DoS but has full visibility ,'

of profit generating transactions. ﬂ
Can censor and reorder transactions.

Searchers Miners

89

BEV Relayer Concerns

= BEV provably incentivises miners to fork (cf. S&P’21)

= BEV relayer centralise the P2P Network
= The relayer may resell/profit from searc

= The relay system doesn’t necessarily rec

ner strategies
uce P2P overhead

= A for profit company distributes the get
miners

N client to >50% of the

* [nnocent users are being stolen from systematically

90

Anti-MEV Solution Space

Fair-Ordering on the Blockchain Layer
= e.g., Aequitas Protocol Family
Fixing MEV of existing dApps

= Merging AMM DEX into one
= On-chain aggregators such as A2ZMM (see DEX lecture)

Designing MEV-Mindful dApps

= Avoiding MEV by design

= e.g., a price oracle update immediate performs a liquidation
Might not fix cross-chain MEV..

91

Application-Specific MEV Mitigation

Price of X declines

r\

Swap X forY
_

Market X, Y
T
6\‘4‘39
Swap X for' Y .
> }‘}‘
o

Market X, Y

= Causes
= Back-run Flooding
= Network Congestions
= Price Gas Auctions
= Transaction Fee Increase

= The user forgoes an
arbitrage opportunity.

92

=

Application-Specific MEV Mitigation

f‘ = Cons

Optimal i
Routing + Swap X forY L " Higher Gas Fees
Arbitrage Market X, Y » Pros
o O
Swap X for Y _Z:Sj_ » Better ex rate
p (© o
o o = Arbitrage profit
= MEV reduction
Swap X forY . .
}N = Healthier chain
D
o

%
“ Market X, Y

93

